670. The Crystal Structure of Potassium Methylenedisulphonate.

By Mary R. Truter.

Potassium methylenedisulphonate, $\mathrm{K}_{2}\left[\mathrm{CH}_{2}\left(\mathrm{SO}_{3}\right)_{2}\right]$, has been investigated by three-dimensional X-ray crystal-structure analysis. Refinement of the co-ordinates and anisotropic thermal-motion parameters reduced the agreement index to $0 \cdot 10$. The bond lengths in the methylenedisulphonate ion, corrected for rotational oscillations, are $S-C=1.770 \pm 0.007 \AA$, and $S-O$ $1.461 \pm 0.005 \AA$, the mean of three independent values; the $S-C-S$ angle is $119.7^{\circ} \pm 0.7^{\circ}$.

THE approximate stereochemistry of the methylenedisulphonate ion can be deduced from its formula, $\mathrm{CH}_{2}\left(\mathrm{SO}_{3}\right)_{2}{ }^{2-}$, as a tetrahedral carbon atom bonded to two tetrahedral sulphur atoms, the sulphur being in the oxidation state vi. This investigation was undertaken to determine the precise dimensions of the anion for comparison with those in (a) the
hydroxymethanesulphinate ion, $\mathrm{HO} \cdot \mathrm{CH}_{2} \cdot \mathrm{SO}_{2}{ }^{-}$, in which a tetrahedral carbon atom is bonded to a sulphur atom in the oxidation state Iv and (b) the isoelectronic pyrosulphate, $\mathrm{S}_{2} \mathrm{O}_{7}{ }^{2-}$ and iminodisulphonate, $\mathrm{NH}\left(\mathrm{SO}_{3}\right)_{2}{ }^{2-}$ ions.

The structure of sodium hydroxymethanesulphinate dihydrate was determined ${ }^{\mathbf{1}}$ in 1955 by three-dimensional methods with allowance for isotropic thermal motion. To provide results comparable with those in this paper, the structure has been refined anisotropically as described in the following paper. ${ }^{2}$

In 1955 Jones 3 showed that potassium iminodisulphonate ($a=12 \cdot 43, b=7 \cdot 46, c=$ $7 \cdot 18 \AA, \beta=91 \cdot 2^{\circ}$) and potassium methylenedisulphonate ($a=12 \cdot 55, b=7.75, c=$ $7.30 \AA, \beta=90.5^{\circ}$) have the same space group; this, and the close similarity of the unitcell dimensions, suggest that the compounds are isostructural. Jeffrey and Jones ${ }^{4}$ determined the structure of potassium iminodisulphonate by three-dimensional methods with isotropic refinement; anisotropic refinement has now been carried out by Cruickshank and Jones. ${ }^{5}$ In 1960 Lynton and Truter ${ }^{6}$ showed that potassium pyrosulphate ($a=$ $12 \cdot 35, b=7 \cdot 31, c=7 \cdot 27 \AA, \beta=93 \cdot 1^{\circ}$) was isostructural with the iminodisulphonate ${ }^{4}$ and published the results of a complete anisotropic refinement.

$$
\text { Crystal Data. }-\mathrm{K}_{2}\left[\mathrm{CH}_{2}\left(\mathrm{SO}_{3}\right)_{2}\right], M=252.34 \text {. Monoclinic } a=12 \cdot 556, b=7.773, c=7.253
$$ all $\pm 0.005 \AA, \beta=90^{\circ} 30^{\prime} \pm 1^{\prime} . \quad U=707 \cdot 9 \AA^{3}, D_{m}=2 \cdot 37,{ }^{1} Z=4, D_{c}=2 \cdot 369, F(000)=496$. Space group $C 2 / c\left(C_{2 h}{ }^{6}\right.$ No. 15). Cu- K_{α} radiation single-crystal oscillation and Weissenberg photographs, absorption coefficient $\mu=170.8 \mathrm{~cm} .^{-1}$. The anion must lie with the carbon atom on a two-fold axis or a centre of symmetry.

Refinement.-The similarity between the unit-cell dimensions of potassium pyrosulphate, potassium iminodisulphonate, and potassium methylenedisulphonate suggests that all three compounds are isostructural. Further, the fractional co-ordinates in the pyrosulphate and the iminodisulphonate are very similar. For the vibration parameters, however, lower values were found for the pyrosulphate than for the iminodisulphonate in a ratio of approximately $1: 1.8$. As the intensities were corrected for absorption in the present work it seemed more likely that the larger values would be more nearly correct. The anisotropy of the thermal motion was approximately the same in both compounds so the first set of struture factors was calculated by using co-ordinates which were the means for those of the other structures and thermal parameters identical with those of the iminodisulphonate. The co-ordinates corresponded to the bond lengths $\mathrm{S}-\mathrm{O}=1.44 \AA, \mathrm{~S}-\mathrm{C}=1.71 \AA$, and R was 0.37 . Four cycles of refinement reduced R to $0 \cdot 13$. At this stage an extinction correction was applied for planes with $\sin \theta<0 \cdot 4$, and the hydrogen atom, having an isotropic temperature factor corresponding to a mean-square vibration of $0.04 \AA^{2}$, was inserted in a position chosen to make the $\mathrm{H}-\mathrm{C}-\mathrm{H}^{\prime}$ plane perpendicular to the $\mathrm{S}-\mathrm{C}-\mathrm{S}^{\prime}$ plane and the $\mathrm{C}-\mathrm{H}$ bond length $1 \cdot 00 \AA$. In the next cycle of refinement R was 0.11 and there was a reduction in the isotropic temperature factor for hydrogen, indicating that it had been correctly placed. Three further cycles of refinement reduced R to 0.10 and the largest shift was 0.2 of the corresponding standard deviation. Table 1 shows the observed and calculated structure factors.

The corrections for rotational oscillation ${ }^{7}$ were determined from an analysis ${ }^{8}$ of the rigidbody vibrational motion of the anion.

Results.-The structure as a whole is shown in Fig. 1; the carbon atoms lie on the two-fold axes by which the two $\mathrm{SO}_{3}{ }^{-}$groups in each anion are related. Figs. 1 and 2 show the numbering of the atoms. The atomic co-ordinates are shown in Table 2 both as fractions and in \AA, where X^{\prime}, Y^{\prime}, and Z^{\prime} refer to orthogonal axes parallel to a, b, and c^{*}, respectively; the standard deviations are also shown. Table 3 shows the vibration parameters and their standard deviations; U_{11}, U_{22}, and U_{33} are mean-square amplitudes of vibration parallel to

[^0]Table 1.
Observed and calculated structure factors ($\times 10$). (Reflections which are too weak to be observed have been omitted.)

Table 1. (Continued.)

	$\left\|F_{o}\right\|$	F_{c}		$\left\|F_{o}\right\|$	F_{c}		$\left\|F_{o}\right\|$	F_{c}		$F_{o}{ }^{\text {l }}$	F_{c}	l	$\left\|F_{0}\right\|$	F_{e}		$\left\|F_{o}\right\|$	F_{c}		$\left\|F_{o}\right\|$	F_{c}
4	511	-519	$\overline{6}$	419	-457	2	573	516		$95 l$		I.	563	-572	$\overline{\mathbf{7}}$	338	-174	$\overline{3}$	125	-84
5	219	254				3	143	-106	0	436	-362	$\overline{\mathbf{2}}$	286	296	$\overline{4}$	92	85	4	362	365
7	155	206		$75 l$		4	78	68	1	358	-332	$\overline{\#}$	352	365						
8	131	146	0	114	-88	5	294	-389	2	81	-67	5	309	328		11,7,l			13,5,	
I	461	453	1	114	-88 61	6	187	-267	3	55	37	$\overline{6}$	232	-234	0	83	108	0	91	95
$\frac{2}{3}$	415	381 -438	2	93 120	61 95	7	128	142	4	62	73				1	81	-57	$\underline{2}$	202	-212
$\frac{\overline{3}}{4}$	444 102	-438 -101	3	248	241	$\overline{1}$	110	184 -138	I	133	98		11,3,l					$\frac{1}{1}$	244	-174
$\frac{4}{5}$	521	-601	4	72	58	$\frac{2}{3}$	667	-138 -740	$\frac{2}{3}$	60 427	-24	0	402	387		13,1,l		$\overline{2}$	93	84
$\frac{5}{6}$	352	- 404	$\frac{1}{2}$	682	-573	$\stackrel{3}{4}$	257	-720 253	$\frac{3}{4}$	427 72	394	1	154	73	0	260	246			
7	321	351	$\frac{2}{4}$	639	-519	5	382	469	4	72	61	2	356	351	1	254	328		15,1,l	
			4	207	192	7	$\begin{aligned} & 082 \\ & 188 \end{aligned}$	$\begin{aligned} & 469 \\ & 213 \end{aligned}$				4	242	-240	2	174	-212	0	79	91
						,				971		I	130	-94	3	64	61	1	197	56
	$73 l$			771					0	135	120	$\overline{2}$	553	-552	4	151	-185	2	167	215
0	647	-572	0	245	255		931		1	57	67	$\overline{3}$	45	8	5	224	326	3	176	-235
1	451	-406	1	174	170	0	883	852	2	32	45	4	67	-61	I	126	84	I	254	364
2	270	-264	2	37	-26	1	171	139	I	100	-22	6	430	457	$\overline{3}$	501	512	$\overline{\mathbf{2}}$	139	-138
3	102	70	3	140	-138	2	420	-364	$\overline{2}$	133	-116				$\frac{4}{5}$	219	-216	$\overline{3}$	103	-94
4	407	405	$\overline{2}$	77	- 65	3	290	-268	$\frac{3}{4}$	114	-74		11,5,l		5	201	-240			
5	258	263	$\overline{3}$	227	-208	4	174	-175	4	140	151	0	159	-153					15,3,	
6	172	170	$\frac{4}{4}$	157	-150	6	324	335				1	136	127		$13,3, L$		0	120	-145
8	98	-160				I	51	51		11,1,l		2	88	-82	0	429	-405	1	117	145
1	102	74				$\overline{2}$	331	294	0	378	-400	3	190	-170	2	320	284	2	105	-148
$\overline{\mathbf{2}}$	791	985		911		$\overline{\#}$	196	150	2	244	-202	4	46	48	3	159	-126	I	108	-71
$\overline{3}$	283	235	0	405	-362	$\overline{4}$	174	-175	3	620	657	I	317	257	4	99	94	$\overline{2}$	162	219
4	233	206	1	707	750	$\overline{6}$	324	335	4	216	232	$\overline{2}$	68	58	$\overline{2}$	87	-71			

the a^{*}-, b^{*}-, and c^{*}-axes, respectively, and, with U_{12}, U_{23}, and U_{13}, define the magnitude and orientation of the ellipsoid of vibration with respect to the crystallographic axes.

An analysis of the vibrational motion of the anion, assumed to be a rigid body, was carried out. First, the position of its mass centre and the direction cosines of the axes of inertia were determined; they are shown in Fig. 2; then, two ellipsoids were calculated, one for the translatory vibrations and one for the rotational oscillations. The directions of the principal axes of these ellipsoids and the corresponding root-mean-square (r.m.s.) amplitudes of vibration

Fig. 1. The structure projected along [001]. Large circles represent potassium ions, medium circles sulphur atoms, small circles oxygen atoms, and the hydrogen atoms are situated at the ends of the short lines. Atoms which lie between $z / c=0$ and $z / c=\frac{1}{2}$ are shown as single circles and those between $z / c=\frac{1}{2}$ and $z / c=1$ as double circles with the exception that $O(1)$ is just on the other side of the boundary. The numbers are distances in \AA between the atoms indicated by the dotted lines.
are shown in Fig. 2. It can be seen that the ellipsoids have different orientations and neither coincides with the axes of inertia. However, the direction of maximum rotational oscillation is found to be fairly close to the axis, I, with the minimum moment of inertia. Cruickshank's revised procedure ${ }^{7}$ was used to calculate the corrections in the atomic co-ordinates required for rotational oscillation; the maximum correction in any one co-ordinate was $0.0065 \AA$. The revised co-ordinates with respect to the orthogonal system are shown in Table 4.

(a)

Fig. 2. A methylenedisulphonate ion viewed (a) along the c-axis and (b) down the b-axis of the crystal. The mass centre is marked \times. The directions of the axes of inertia ($I, ~ I I$, and III in order of increasing moment of inertia) are shown by full lines, and in (b) the orientation of the crystallographic axes is indicated by broken lines. The direction of the principal axes of the ellipsoid of translational vibration are shown by \longleftrightarrow with the corresponding r.m.s. amplitudes in \AA. The directions of the principal axes of rotation are indicated by the curved arrows and the r.m.s. amplitudes of oscillation are given in degrees.

Table 2.
Atomic co-ordinates.

	x / a	y / b	z / c	$X^{\prime}(\AA)$	$\boldsymbol{\sigma}(X)(\AA)$	$Y^{\prime}(\AA)$	$\sigma(Y)(\AA)$	$Z^{\prime}(\AA)$	$\sigma(Z)(\AA)$
K	$0 \cdot 152$	$0 \cdot 132$	-0.146	1.912	0.002	1.026	0.002	-1.060	$0 \cdot 002$
S..	$0 \cdot 396$	-0.194	$0 \cdot 140$	$4 \cdot 962$	$0 \cdot 002$	-1.505	$0 \cdot 002$	1.013	0.002
$\mathrm{O}(1)$	$0 \cdot 443$	-0.295	-0.008	$5 \cdot 568$	0.007	-2.290	0.008	-0.062	0.008
$\mathrm{O}(2)$	0.327	-0.057	0.075	$4 \cdot 105$	0.007	-0.445	0.008	0.545	0.009
$\mathrm{O}(3)$	$0 \cdot 347$	-0.300	$0 \cdot 281$	$4 \cdot 339$	0.008	-2.334	0.008	2.039	0.009
C	$0 \cdot 500$	-0.080	$0 \cdot 250$	6.262	-	-0.622	0.013	1.813	
H	0.536	-0.004	$0 \cdot 150$	6.71	$0 \cdot 15$	-0.03	$0 \cdot 14$	1.09	$0 \cdot 12$

Table 3.
Vibration parameters (all units are $10^{-3} \AA^{2}$).

	U_{11}	σ	U_{22}	σ	U_{33}	σ	U_{12}	σ	U_{23}	σ	U_{13}	σ
K	35	1	35	1	31	1	3	1	-5	1	-8	1
S	27	1	19	1	31	1	0	1	1	1	-6	1
$\mathrm{O}(1)$	39	4	32	4	46	5	-2	3	-10	3	2	3
$\mathrm{O}(2)$	27	3	39	4	53	5	-6	3	13	4	0	3
$\mathrm{O}(3)$	41	4	32	4	50	5	8	3	3	3	-5	3
C	27	6	22	6	42	8	0	-	0	-	-8	5
H	Isotro	\checkmark										

Table 4.
Atomic co-ordinates of the anion corrected for rotational oscillation (all in \AA).

	S	$\mathrm{O}(1)$	$\mathrm{O}(2)$	$\mathrm{O}(3)$	C	H
X^{\prime}	4.959	$5 \cdot 568$	$4 \cdot 099$	$4 \cdot 333$	6.262	6.716
Y^{\prime}	-1.505	-2.294	-0.439	-2.340	-0.616	-0.020
Z^{\prime}.	1.010	-0.070	0.541	2.041	1.813	1.086

This treatment differs from that published for the pyrosulphate ion in which the vibrations with respect only to the axes of inertia were determined. For comparison with the present results the additional calculations have been carried out according to Cruickshank's revised procedure. For the pyrosulphate ion the principal axes of both ellipsoids are nearer the axes of inertia than in the methylenedisulphonate; for rotational oscillation the axis of maximum vibration makes an angle of 2° with I and the r.m.s. amplitude is 6.4° while the axis of minimum vibration is along III, the 2 -fold axis of the ion, and the r.m.s. amplitude is $2 \cdot 8^{\circ}$. There is no significant difference between these amplitudes of rotational oscillation and those for the methylenedisulphonate ion. For translatory motion the maximum r.m.s. amplitude of vibration is $0.11 \AA$ in a direction at 17° to I and the minimum is again along III with an r.m.s. amplitude of $0.08 \AA$. These values are smaller than the corresponding ones in potassium methylenedisulphonate probably because no absorption correction was applied to the observations on potassium pyrosulphate. Revision of the co-ordinate correction increases the average S-O bond length from 1.437 to $1.440 \AA$ but the $S-O-$ bond length ($1 \cdot 645 \AA$) remains unchanged.

Interatomic Distances and Angles.-Table 5 shows the bond lengths and bond angles, and their standard deviations, together with the mean length of the chemically indistinguishable bonds; these values have been calculated from the corrected co-ordinates given by the computer

Table 5.
Bond lengths (\AA) and angles in the methylenedisulphonate ion.

$\mathrm{S}-\mathrm{O}(1)$	$\} 1.461 \pm 0.005 \AA$	$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(2)$	113.8°	$\}$ all $\pm 0.5^{\circ}$
$\mathrm{S}-\mathrm{O}(2)$		$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(3)$	112.8	
$\mathrm{S}-\mathrm{O}(3)$	$1.467 \pm 0.009\}$	$\mathrm{O}(2)-\mathrm{S}-\mathrm{O}(3)$	113.2	
$\mathrm{S}-\mathrm{C}$	1.770 ± 0.007	$\mathrm{C}-\mathrm{S}-\mathrm{O}(1)$	107.3	
$\mathrm{C}-\mathrm{H}$	1.04 ± 0.14	$\mathrm{C}-\mathrm{S}-\mathrm{O}(2)$	$102 \cdot 4$	
		$\mathrm{C}-\mathrm{S}-\mathrm{O}(3)$	106.3	
		$\mathrm{S}-\mathrm{C}-\mathrm{S}$	$119.7 \pm$	0.7
		$\mathrm{H}-\mathrm{C}-\mathrm{S}$	107	8
		$\mathrm{H}-\mathrm{C}-\mathrm{H}$	$110 \pm$	10

to four decimal places, not from the rounded-off values in Table 4. In Fig. 1 the distances of less than $3.5 \AA$ from a potassium ion to its neighbours are shown together with the distances of less than $3.0 \AA$ from a hydrogen atom to atoms in the nearest anion.

Discussion.-Some months before this refinement was completed Dr. D. W. J. Cruickshank predicted the bond lengths " $\mathrm{C}-\mathrm{S}$ at least $1.76 \AA$ and $\mathrm{S}-\mathrm{O} 1.43-1.46 \AA$." He has now published ${ }^{9}$ his theoretical treatment of $\mathrm{XO}_{4}{ }^{n-}$ and related ions and his essentially correct prediction lends support to his theory. According to Cruickshank there is π-bonding between d-orbitals on sulphur and the p-orbitals on nitrogen or oxygen in the iminodisulphonate or pyrosulphate ions: in both ions the π-bond order is $3 / 15$ so that the $\mathrm{S}-\mathrm{N}$ and $\mathrm{S}-\mathrm{O}$ bond lengths 1.662 and $1.645 \AA$ represent partial double bonds. In the methylenedisulphonate ion no π-bonding is possible to the carbon atom, so that the S-C bond length of $1.770 \AA$ represents a single bond. Further discussion of the significance of the bond lengths is deferred to the following paper on sodium hydroxymethanesulphinate.

As is usual in $\mathrm{Y}-\mathrm{SO}_{3}{ }^{-}$groups electrostatic repulsion between the charged oxygen atoms causes the bond angles round sulphur to differ from those of a regular tetrahedron, the $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angles being larger and the $\mathrm{O}-\mathrm{S}-\mathrm{C}$ angles smaller. The $\mathrm{S}-\mathrm{C}-\mathrm{S}$ angle is significantly larger than the tetrahedral angle or the $\mathrm{H}_{2} \mathrm{C}^{-}$angle (113°) found in paraffins. A similar but smaller increase in angle from the ideal of 120° is found for $\mathrm{S}-\mathrm{N}-\mathrm{S}\left(5 \cdot 5^{\circ}\right)$ and $\mathrm{S}-\mathrm{O}-\mathrm{S}$ in the iminodisulphonate and pyrosulphate ions.

Fig. 1 shows that the potassium ion is surrounded.by nine oxygen atoms with distances

[^1]ranging from 2.70 to $3.35 \AA$. The corresponding distances in potassium iminodisulphonate and potassium pyrosulphate are shown:

Comparison of interionic distances (all in \AA).

										Mean
$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$	$2 \cdot 84$	$2 \cdot 80$	3.22	3.05	2.76	$3 \cdot 10$	2.76	$2 \cdot 81$	$2 \cdot 71$	$2 \cdot 89$
$\mathrm{NH}\left(\mathrm{SO}_{3}\right)_{2} \mathrm{~K}_{2}$	2.95	$2 \cdot 82$	3.05	3.00	2.71	$3 \cdot 23$	2.75	$2 \cdot 83$	$2 \cdot 70$	$2 \cdot 89$
$\mathrm{CH}_{2}\left(\mathrm{SO}_{3}\right)_{2} \mathrm{~K}_{2}$	$3 \cdot 35$	$2 \cdot 83$	$3 \cdot 06$	$3 \cdot 15$	$2 \cdot 75$	3.09	$2 \cdot 81$	$2 \cdot 86$	$2 \cdot 70$	2.96

As the standard deviation is $0.01 \AA$, some of the differences in these distances are significant. The individual variations are consistent with longer central bonds and smaller central angles in the methylenedisulphonate anions and with the larger relative displacement of the anions along the b-axis to accommodate the hydrogen atoms. The greater volume of the anion itself gives rise to the observed larger volume for the unit cell in the methylenedisulphonate; the ratios of the volumes of the three unit cells is $1: 1: 1.08$, and the main difference in the unit cell dimensions (given in the introduction) is a larger value of b as the number of hydrogen atoms increases.

Experimental.-The crystals were supplied by Dr. D. W. Jones and were part of the sample he prepared for the preliminary investigation. ${ }^{3}$

The unit-cell dimensions were determined by the Straumanis method. Equi-inclination photographs were taken about the three principal axes from the zero to the fourth layer lines inclusive. For photographs about the $[a]$ - and $[c]$-axes the crystals used were equi-dimensional and of side 0.15 mm ., while for photographs about $[b]$ a crystal of side 0.4 mm . was used. The absorption correction appropriate to spherical crystals was applied to the observations about each axis. Of the 810 possible reflections 643 gave measurable intensities. A multiple-film method was used and intensities estimated visually with the aid of a calibration strip. Lorentz and polarisation corrections were applied with a computer programme written by Dr. F. M. Lovell. The intensities were correlated and their square roots extracted to give a set of relative structure amplitudes which were scaled approximately by comparison with the corresponding values for the isostructural potassium pyrosulphate. During refinement the scale factor was one of the parameters. An empirical extinction correction $I_{\mathrm{t} \cdot \mathrm{ue}}=I_{\mathrm{obs}} \exp \left(\alpha I_{\text {calc. }}\right)$ was applied after four cycles of refinement and α was found to be 2.65×10^{-4}.

The scattering factors used were the corrected values of Tomiie and Stam ${ }^{10}$ for S, those of Berghuis et al. ${ }^{11}$ for C, O, and K^{+}and the expression $1 /\left(1+\frac{4 \pi^{2} \sin ^{2} \theta}{\lambda^{2}}\right)^{2}$ for hydrogen. Refinement was carried out by the method of least squares on the Leeds University Ferranti Pegasus computer with programmes ${ }^{12}$ devised by Dr. D. W. J. Cruickshank and Miss D. E. Pilling.

The function minimised was $R=\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where the weighting factor w was $1 /\left|F_{o}\right|$.
Analysis of the thermal motion and calculation of the corrections for rotational oscillation were carried out on the Pegasus computer with programmes written by Dr. Cruickshank and Mr. Bujosa. ${ }^{12}$

I am grateful to Mr. D. Holey for taking the photographs, to Mrs. P. M. E. Currie for estimating the intensities of those taken about one of the axes, to my colleagues for the use of their programmes, ${ }^{12}$ and to the Director of the Leeds University Computing Laboratory for the use of the computing facilities. Some of the equipment was provided by the Royal Society and Imperial Chemical Industries Limited.

Department of Inorganic \& Structural Chemistry, The University, Leeds, 2.
[Received, March 15th, 1962.]
${ }^{10}$ Tomiie and Stam, Acta Cryst., 1958, 11, 126.
11 Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
${ }^{12}$ Cruickshank, Pilling, and, in part, Bujosa, Lovell, and Truter, "Computing Methods and the Phase Problem in X-ray Crystal Analysis," Pergamon Press, Oxford, 1961.

[^0]: ${ }^{1}$ Truter, J., 1955, 3064.
 2 Truter, following paper.
 ${ }^{3}$ Jones, Acta Cryst., 1955, 8, 66.
 4 Jeffrey and Jones, Acta Cryst., 1956, 9, 283.
 ${ }_{5}{ }^{5}$ Cruickshank and Jones, unpublished work.
 ${ }^{6}$ Lynton and Truter, J., 1960, 5112.
 ${ }^{7}$ Cruickshank, Acta Cryst., 1961, 14, 896.
 ${ }^{8}$ Cruickshank, Acta Cryst., 1956, 9, 754.

[^1]: ${ }^{2}$ Cruickshank, $J ., 1961,5486$.

